HIGH-BTU PROJECTS USING PRESSURE SWING ADSORPTION ("PSA") TECHNOLOGY

Presented by:

Richard W. Gladstone, II

CEO of Green Gas Energy, LLC

January 23, 2007

GREEN GAS ENERGY GROUP

GREEN GAS ENERGY GROUP:

A.R.C. Technologies Corporation

Designs Plants: Landfill Gas Into Pipeline Gas.

GREEN GAS ENERGY GROUP:

A.R.C. Technologies Corporation

• Designs Plants: Landfill Gas Into Pipeline Gas.

Industrial Operations, LLC

Operates & Maintains High-Btu Plants.

GREEN GAS ENERGY GROUP:

A.R.C. Technologies Corporation

Designs Plants: Landfill Gas Into Pipeline Gas.

Industrial Operations, LLC

Operates & Maintains High-Btu Plants.

Green Gas Energy, LLC

Obtains Landfill Gas Rights/Project Financing.

THREE TECHNOLOGIES USED

THREE TECHNOLOGIES USED:

1. Chemical Separation of Landfill Gases:

Solvent/Selexol.

THREE TECHNOLOGIES USED:

- 1. Chemical Separation of Landfill Gases:
 - Solvent/Selexol.
- 2. Physical Separation of Gases by Membranes:
 - Air Liquide or UOP.

THREE TECHNOLOGIES USED:

- 1. Chemical Separation of Landfill Gases:
 - Solvent/Selexol.
- 2. Physical Separation of Gases by Membranes:
 - Air Liquide or UOP.
 - 3. Physical Separation of Gases by PSA:
 - QuestAir or Engelhard/Guild or ARC.

TECHNOLOGY APPLIED TO HIGH-BTU LANDFILL PROJECTS

TECHNOLOGY APPLIED TO HIGH-BTU LANDFILL PROJECTS:

			mmscfd		
Landfill	Location	Inlet	Since	Owner	Type
Fresh Kills	Staten Island, NY	14.5	1982	GSF	S
Rumke	Cincinnati, OH	9	1986	GSF	PSA
McCarty Road	Houston, TX	8	1987	GSF	S
McCommas Bluff	Dallas, TX	9	2000	E/S	PSA
Johnson County	Shawnee, KS	4.9	2001	STT	S
StThomas	Montreal, Canada	5	2003	EBI	M
Pinnacle Road	Dayton, OH	5.4	2003	DTE	S
Monroeville	Pittsburgh, PA	5	2004	Magellan	M
Valley	Pittsburgh, PA	5	2004	Magellan	M

Key: S = Solvent PSA = Pressure Swing Adsorption M = Membrane

Source: SCS Engineers January 2006 LMOP Conference Presentation.

2 PSA ---- 3 Membrane --- 4 Solvent/Selexol

• Used Since 1960s for Industrial Separation of Gases.

•Used Since 1960s for Industrial Separation of Gases.

 Physically Separates Methane from Other Landfill Gases.

- Used Since 1960s for Industrial Separation of Gases.
 - Physically Separates Methane from Other Landfill Gases.
 - Separates Gases by Molecular Sizes.

- Used Since 1960s for Industrial Separation of Gases.
 - Physically Separates Methane from Other Landfill Gases.
 - Separates Gases by Molecular Sizes.
 - Molecular Sizes Measured in Angstroms:
 - Angstrom = One Ten-Billionth of a Meter.

Methane 3.8 angstroms.

Methane 3.8 angstroms.

Nitrogen 3.6 angstroms.

Methane 3.8 angstroms.

Nitrogen 3.6 angstroms.

Oxygen 3.5 angstroms.

- Methane 3.8 angstroms.
- Nitrogen 3.6 angstroms.
 - Oxygen 3.5 angstroms.
- Carbon Dioxide 3.4 angstroms.

PSA USES EXTREMELY POROUS SOLID MATERIAL

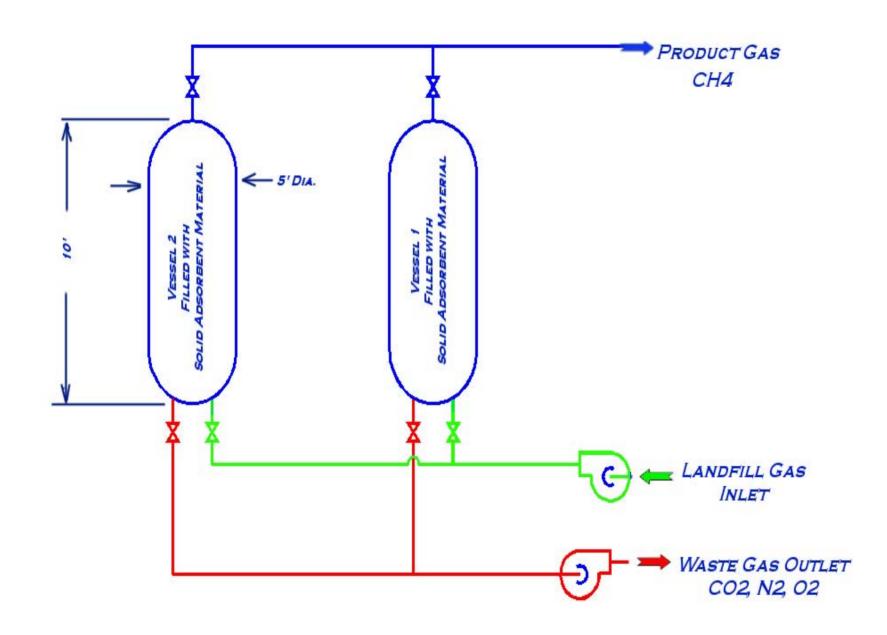
PSA USES EXTREMELY POROUS SOLID MATERIAL:

Pore Openings 3.7 angstroms in Diameter.

PSA USES EXTREMELY POROUS SOLID MATERIAL:

- Pore Openings 3.7 angstroms in Diameter.
- Think of Many Tiny Wiffle Balls with Surface Holes Having 3.7 angstrom Diameter.

PSA USES EXTREMELY POROUS SOLID MATERIAL:


- Pore Openings 3.7 angstroms in Diameter.
- •Think of Many Tiny Wiffle Balls with Surface Holes Having 3.7 angstrom Diameter.
 - Pore Openings Too Small for Methane but Large Enough for Other Gases to Go Into.

PSA USES EXTREMELY POROUS SOLID MATERIAL:

- Pore Openings 3.7 angstroms in Diameter.
- Think of Many Tiny Wiffle Balls with Surface Holes Having 3.7 angstrom Diameter.
 - Pore Openings Too Small for Methane but Large Enough for Other Gases to Go Into.
 - Non-Methane Gases Go Into Adsorption Material and Methane Gases Pass Through.

PSA FLOW CHART

(AT LEAST TWO PSA VESSELS)

FOUR STEPS IN PSA PROCESS

FOUR STEPS IN PSA PROCESS:

Step 1: Draw Vacuum on Both PSA Vessels:

 Adsorbent Material Prepared to Draw In Gasses Small Enough to Fit In.

FOUR STEPS IN PSA PROCESS:

Step 1: Draw Vacuum on Both PSA Vessels:

 Adsorbent Material Prepared to Draw In Gasses Small Enough to Fit In.

Step 2: Feed Landfill Gas Into First Vessel Under Pressure:

- Methane will Pass Through the PSA Vessel.
- Smaller Gases will be Drawn Into Adsorbent Material.

Step 3: Shift Landfill Gas Flow to Second Vessel and Draw Vacuum on the First Vessel:

 New Vacuum on First Vessel will Draw Out Waste Gases into a Waste Line.

Step 3: Shift Landfill Gas Flow to Second Vessel and Draw Vacuum on the First Vessel:

 New Vacuum on First Vessel will Draw Out Waste Gases into a Waste Line.

Step 4: Shift Landfill Gas Back to First Vessel and Draw Vacuum on Second Vessel:

- Continually Repeat Process.
- Thus, the term "Pressure Swing Adsorption".

HIGH-BTU PROJECTS

VS.

PIPELINE QUALITY PROJECTS

HIGH-BTU VS. PIPELINE QUALITY PROJECTS

Relatively Easy to Remove CO2.

HIGH-BTU VS. PIPELINE QUALITY PROJECTS

- Relatively Easy to Remove CO2.
- Remove CO2 (50% of Landfill Gas) = High-Btu.

HIGH-BTU VS. PIPELINE QUALITY PROJECTS

- Relatively Easy to Remove CO2.
- Remove CO2 (50% of Landfill Gas) = High-Btu.
 - High-Btu = Use in Nearby Boilers or "Blend" into Natural Gas Pipelines.

HIGH-BTU VS. PIPELINE QUALITY PROJECTS

- Relatively Easy to Remove CO2.
- Remove CO2 (50% of Landfill Gas) = High-Btu.
 - High-Btu = Use in Nearby Boilers or "Blend" Into Natural Gas Pipelines.
- Natural Gas Pipelines Do Not Normally Deviate from their Specifications.

NATURAL GAS PIPELINE SPECIFICATIONS

Typically:

• BTU > 970/cf.

- BTU > 970/cf.
- H2S < 4 ppm.

- BTU > 970/cf.
- H2S < 4 ppm.
- H2O < 7 lbs./mmcf.

- BTU > 970/cf.
- H2S < 4 ppm.
- H2O < 7 lbs./mmcf.
- CO2 + N2 ("Inerts") < 4 %.

- BTU > 970/cf.
- H2S < 4 ppm.
- H2O < 7 lbs./mmcf.
- CO2 + N2 ("Inerts") < 4 %.
 - O2 < 0.2%.

ROADBLOCK TO PIPELINE IS Oxygen

ROADBLOCK TO PIPELINE IS 02:

• Removal of all CO2 Not Difficult, Leaving 4% for N2.

ROADBLOCK TO PIPELINE IS 02:

•Removal of all CO2 Not Difficult, Leaving 4% for N2.

• If Landfill Gas is 1% O2, then Removing CO2 (50% of Landfill Gas) Doubles O2 to 2%:

- Ten times O2 Spec. of < 0.2%.

ROADBLOCK TO PIPELINE IS 02:

- Removal of all CO2 Not Difficult, Leaving 4% for N2.
- If Landfill Gas is 1% O2, then Removing CO2 (50% of Landfill Gas) Doubles O2 to 2%:
 - Ten times O2 Spec. of < 0.2%.
 - Most Landfill Gas Separation Technologies
 Effectively Remove CO2 But Do Not
 Significantly Reduce O2.

NEW PSA TECHNOLOGY FOR O2/N2

NEW PSA TECHNOLOGY FOR 02/N2:

• ARC Developed PSA Addressing CO2 & O2/N2.

NEW PSA TECHNOLOGY FOR 02/N2:

- ARC Developed PSA Addressing CO2 & O2/N2.
- ARC Demonstration Unit Producing Pipeline Quality Gas (<0.2% O2) from Landfill Gas Having Over 2% O2 and 10% N2 Since July 2006.

NEW PSA TECHNOLOGY FOR 02/N2:

- ARC Developed PSA Addressing CO2 & O2/N2.
- ARC Demonstration Unit Producing Pipeline Quality Gas (<0.2% O2) from Landfill Gas Having Over 2% O2 and 10% N2 Since July 2006.
 - ARC Full-Scale Plant (1,200 cfm inlet)
 Operational in Several Months:
 - Two Stage PSA: CO2 Stage & O2/N2 Stage.
 - Control System Adjusts PSA Retention Times.

ADVANTAGES OF GETTING INTO THE NATURAL GAS PIPELINE

ADVANTAGES OF GETTING INTO THE NATURAL GAS PIPELINE:

- Product Gas Sold at Natural Gas Prices:
 - Higher Gross Sales = Higher Royalties.
 - Constant, Permanent Demand for Gas.

ADVANTAGES OF GETTING INTO THE NATURAL GAS PIPELINE:

- Product Gas Sold at Natural Gas Prices:
 - Higher Gross Sales = Higher Royalties.
 - Constant, Permanent Demand for Gas.
- Premiums from Renewable Energy Credits ("RECs"), e.g., CT RPS Program.

ADVANTAGES OF GETTING INTO THE NATURAL GAS PIPELINE:

- Product Gas Sold at Natural Gas Prices:
 - Higher Gross Sales = Higher Royalties.
 - Constant, Permanent Demand for Gas.
- Premiums from Renewable Energy Credits ("RECs"), e.g., CT RPS Program.
 - Possible Section 45 Tax Credits.